osteoporosis

Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism

Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity.

PLS3 sequencing in childhood-onset primary osteoporosis identifies two novel disease-causing variants

Altogether 95 children with primary bone fragility were screened for variants in PLS3, the gene underlying X-linked osteoporosis. Two children with multiple peripheral and spinal fractures and low BMD had novel disease-causing PLS3 variants. Children with milder phenotypes had no pathogenic variants. PLS3 screening is indicated in childhood-onset primary osteoporosis.

Reduced bone loss in a murine model of postmenopausal osteoporosis lacking complement component 3

The growing field of osteoimmunology seeks to unravel the complex interdependence of the skeletal and immune systems. Notably, we and others have demonstrated that complement signaling influences the differentiation of osteoblasts and osteoclasts, the two primary cell types responsible for maintaining bone homeostasis. However, the net effect of complement on bone homeostasis in vivo was unknown.

Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis

Mutations in WNT1 cause osteogenesis imperfecta (OI) and early-onset osteoporosis, identifying it as a key Wnt ligand in human bone homeostasis. However, how and where WNT1 acts in bone are unclear. To address this mechanism, we generated late-osteoblast-specific and osteocyte-specific WNT1 loss- and gain-of-function mouse models. Deletion of Wnt1 in osteocytes resulted in low bone mass with spontaneous fractures similar to that observed in OI patients.

Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation

Endogenous glucocorticoids (GCs) support normal bone development and bone mass maintenance, whereas long-term exposure to pharmacological dosages of GCs uncouples bone formation and resorption, resulting in GC-induced osteoporosis (GIOP). Heat shock protein 90 (HSP90) chaperoning glucocorticoid receptor (GR) signaling prompts us to speculate that HSP90 plays critical roles in GC-mediated bone formation and GIOP.