Built-In Electric Fields Dramatically Induce Enhancement of Osseointegration

Rapid and effective osseointegration is a great challenge in clinical practice. Endogenous electronegative potentials spontaneously appear on bone defect sites and mediate healing. Thus, bone healing can potentially be stimulated using physiologically relevant electrical signals in implants. However, it is difficult to directly introduce physiologically relevant electric fields in bone tissue.

Retrieval Analysis of Porous Titanium Glenoid Posts: An Evaluation of Osteointegration

Glenoid component loosening is a commonly encountered complication of total shoulder replacements. Therefore, focus has been placed on glenoid fixation. Porous metal implants, which promote biological fixation through osteointegration, have provided an uncemented alternative to the traditional cemented implant. In this explantation study, the authors examined the bone ingrowth and ongrowth of a specific porous titanium glenoid peg. Six explanted polyethylene glenoid components with porous titanium-coated central pegs were identified in the authors' implant retrieval program via retrospective review.

Comparative 3D micro-CT and 2D histomorphometry analysis of dental implant osseointegration in the maxilla of minipigs

The bone implant contact (BIC) has traditionally been evaluated with histological methods. Thereupon, strong correlations of two-dimensional (2D) BIC have been detected between μCT and destructive histology. However, due to the high intra-sample variability in BIC values, one histological slice is not sufficient to represent 3D BIC. Therefore, our aim has been to correlate the averaged values of 3–4 histological sections to 3D μCT.

Osseointegration of nanohydroxyapatite- or nano-calcium silicate-incorporated polyetheretherketone bioactive composites in vivo

Polyetheretherketone (PEEK) exhibits appropriate biomechanical strength as well as good biocompatibility and stable chemical properties but lacks bioactivity and cannot achieve highly efficient osseointegration after implantation. Incorporating bioceramics into the PEEK matrix is a feasible approach for improving its bioactivity.