anabolic

Sclerostin Antibody Augments the Anabolic Bone Formation Response in a Mouse Model of Mechanical Tibial Loading

Decreased activity or expression of sclerostin, an endogenous inhibitor of Wnt/β-catenin signaling, results in increased bone formation and mass. Antibodies targeting and neutralizing sclerostin (Scl-Ab) have been shown to increase bone mass and reduce fracture risk. Sclerostin is also important in modulating the response of bone to changes in its biomechanical environment. However, the effects of Scl-Ab on mechanotransduction are unclear, and it was speculated that the loading response may be altered for individuals receiving Scl-Ab therapy.

Interleukin-32 Gamma Stimulates Bone Formation by Increasing miR-29a in Osteoblastic Cells and Prevents the Development of Osteoporosis

Interleukin-32 gamma (IL-32γ) is a recently discovered cytokine that is elevated in inflamed tissues and contributes to pathogenic features of bone in human inflammatory rheumatic diseases. Nevertheless, the role of IL-32γ and its direct involvement in bone metabolism is unclear.

Increased Bone Mass in Female Mice Lacking Mast Cell Chymase

Here we addressed the potential impact of chymase, a mast-cell restricted protease, on mouse bone phenotype. We show that female mice lacking the chymase Mcpt4 acquired a persistent expansion of diaphyseal bone in comparison with wild type controls, reaching a 15% larger diaphyseal cross sectional area at 12 months of age.

FIAT deletion increases bone mass but does not prevent high-fat-diet-induced metabolic complications

FIAT (Factor Inhibiting ATF4-mediated Transcription) interacts with ATF4 to repress its transcriptional activity. We performed a phenotypic analysis of Fiat-deficient male mice (Fiat-/Y) at 8 and 16 weeks of age. Fiat-/Y mice appeared normal at birth and weight gain was comparable between genotypes. μCT analysis of proximal femur demonstrated 46% and 13% age-dependent increases in trabecular bone volume and thickness, respectively, in Fiat-/Y mice.

Effects of Abaloparatide-SC (BA058) on bone histology and histomorphometry: The ACTIVE phase 3 trial

There are a number of effective treatments for osteoporosis but most are in the antiresorptive class of compounds. Abaloparatide-SC is a new osteoanabolic agent, which increased bone mineral density and lowered the risk of osteoporosis-related fractures in the phase 3 ACTIVE trial.

A Novel Hybrid Compound LLP2A-Ale Both Prevented and Rescued the Osteoporotic Phenotype in a Mouse Model of Glucocorticoid-Induced Osteoporosis

Prolonged glucocorticoid (GC) administration causes secondary osteoporosis (GIOP) and non-traumatic osteonecrosis. LLP2A-Ale is a novel bone-seeking compound that recruits mesenchymal stem cells to the bone surface, stimulates bone formation, and increases bone mass. The purpose of this study was to determine if treatment with LLP2A-Ale alone or in combination with parathyroid hormone (PTH) could prevent or treat GIOP in a mouse model.