Sclerostin antibody enhances bone formation in a rat model of distraction osteogenesis

Neutralizing monoclonal sclerostin antibodies are effective in promoting bone formation at a systemic level and in orthopedic scenarios including closed fracture repair. In this study we examined the effects of sclerostin antibody (Scl-Ab) treatment on regenerate volume, density and strength in a rat model of distraction osteogenesis.

Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells

In this study, we engineered mesenchymal stem cells (MSCs) to over-express basic fibroblast growth factor (bFGF) and evaluated its effects on fracture healing. Adipose-derived mouse MSCs were transduced to express bFGF and green fluorescence protein (ADSCbFGF-GFP). Closed-femoral fractures were performed with osterix-mCherry reporter mice of both sexes.

Improved union and bone strength in a mouse model of NF1 pseudarthrosis treated with recombinant human bone morphogenetic protein-2 and zoledronic acid

Tibial pseudarthrosis associated with Neurofibromatosis type 1 (NF1) is an orthopedic condition with consistently poor clinical outcomes. Using a murine model that features localized double inactivation of the Nf1 gene in an experimental tibial fracture, we tested the effects of recombinant human bone morphogenetic protein-2 (rhBMP-2) and/or the bisphosphonate zoledronic acid (ZA).

Upregulation of Akt signaling enhances femoral fracture healing by accelerating atrophic quadriceps recovery

Muscle damage and disuse muscular atrophy are detrimental for fracture healing. It has been reported that the Akt signaling pathway plays a role in skeletal muscle hypertrophy and atrophy. The aim of this study was to further investigate whether promoting local muscle function through regulating Akt signaling affects fracture healing. For this purpose, we combined a rat model of short-term atrophy of the quadriceps with a femoral fracture model.

Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice

Fracture healing recapitulates many aspects of developmental osteogenesis. The hedgehog (Hh) signaling pathway, essential to skeletal development, is upregulated during fracture healing, although its importance is unclear. Our goal was to assess the functional importance of Hh signaling in endochondral fracture healing.

Sclerostin Antibody Increases Callus Size and Strength but does not Improve Fracture Union in a Challenged Open Rat Fracture Model

Open fractures remain a challenge in orthopedics. Current strategies to intervene are often inadequate, particularly in severe fractures or when treatment is delayed. Sclerostin is a negative regulator of bone growth and sclerostin-neutralizing antibodies (Scl-Ab) can increase bone mass and strength. The application of these antibodies to improve orthopedic repair has shown varied results, and may be dependent on the location and severity of the bony injury. We examined Scl-Ab treatment within an established rat osteotomy model with periosteal stripping analogous to open fracture repair.